Production of Bio-Ethanol from Agricultural Waste Using Microbes: An Overview
Production of Bio-Ethanol from Agricultural Waste
DOI:
https://doi.org/10.54393/mjz.v5i01.75Keywords:
Biofuel, Bioethanol, Pretreatment, Biocatalyst, FermentationAbstract
Ethanol produced through the fermentation of plant biomass is considered an environment friendly alternate to fossil fuels. Bioethanol and biodiesel, commonly known as second-generation biofuels, are produced through biological processes using agro-industrial waste and are considered sustainable, safe, and ecofriendly. These biofuels can minimize the emission of carbon dioxide and reduced the world’s dependence on fossil fuel. This review article focuses on three generations of biofuels, particularly the production of biofuel using fungal biocatalysts specifically Aspergillus niger and Saccharomyces cerevisiae and the mechanism by which they convert biomass into biofuel. A. niger is known for releasing cellulolytic and pectolytic enzymes to hydrolyze biomass and survive against toxins, while S. cerevisiae produces invertase and zymase enzymes to convert sucrose into fructose and glucose sugars, and then further convert fructose and glucose into ethanol. The main purpose of this review is to explore alternative techniques for generating biofuels, using as few harmful chemicals as possible and reducing time consumption.
References
Kohler M. An economic assessment of bioethanol production from sugar cane: The case of South Africa. Economic Research Southern Africa-ERSA. Working Paper. 2016 Aug; 630.
Lencioni RA, Allgaier HP, Cioni D, Olschewski M, Deibert P, Crocetti L, et al. Small hepatocellular carcinoma in cirrhosis: randomized comparison of radio-frequency thermal ablation versus percutaneous ethanol injection. Radiology. 2003 Jul; 228(1): 235-40. doi: 10.1148/radiol.2281020718.
Neale RE, Barnes PW, Robson TM, Neale PJ, Williamson CE, Zepp RG, et al. Environmental effects of stratospheric ozone depletion, UV radiation, and interactions with climate change: UNEP Environmental Effects Assessment Panel, Update 2020. Photochemical & Photobiological Sciences. 2021 Jan; 20(1): 1-67.
Lisboa CC, Butterbach‐Bahl KL, Mauder M, Kiese R. Bioethanol production from sugarcane and emissions of greenhouse gases–known and unknowns. GCB Bioenergy. 2011 Aug; 3(4): 277-92. doi: 10.1111/j.1757-1707.2011.01095.x.
Brenna H, Kutterolf S, Krüger K. Global ozone depletion and increase of UV radiation caused by pre-industrial tropical volcanic eruptions. Scientific Reports. 2019 Jul; 9(1): 9435. doi: 10.1038/s41598-019-45630-0.
Hemansi, Gupta R, Yadav G, Kumar G, Yadav A, Saini JK, et al. Second generation bioethanol production: the state of art. Sustainable Approaches for Biofuels Production Technologies: From Current Status to Practical Implementation. 2018 Jul: 121-46. doi: 10.1007/978-3-319-94797-6_8.
Qiu H, Huang J, Yang J, Rozelle S, Zhang Y, Zhang Y, et al. Bioethanol development in China and the potential impacts on its agricultural economy. Applied Energy. 2010 Jan; 87(1): 76-83. doi: 10.1016/j.apenergy.2009.07.015.
Füssel HM. An updated assessment of the risks from climate change based on research published since the IPCC Fourth Assessment Report. Climate Change. 2009 Dec; 97(3-4): 469-82. doi: 10.1007/s10584-009-9648-5.
Wang Z. Influence of climate change on marine species and its solutions. IOP Conference Series: Earth and Environmental Science. 2022 Apr; 1011(1): 012053. doi: 10.1088/1755-1315/1011/1/012053.
Doney SC, Ruckelshaus M, Emmett Duffy J, Barry JP, Chan F, English CA, et al. Climate change impacts on marine ecosystems. Annual Review of Marine Science. 2012 Jan; 4: 11-37. doi: 10.1146/annurev-marine-041911-111611.
Jeswani HK, Chilvers A, Azapagic A. Environmental sustainability of biofuels: a review. Proceedings of the Royal Society A. 2020 Nov; 476(2243): 20200351. doi: 10.1098/rspa.2020.0351.
Dias De Oliveira ME, Vaughan BE, Rykiel EJ. Ethanol as fuel: energy, carbon dioxide balances, and ecological footprint. BioScience. 2005 Jul; 55(7): 593-602. doi: 10.1641/0006-3568(2005)055[0593:EAFECD]2.0.CO;2.
Mizik T and Gyarmati G. Economic and sustainability of biodiesel production—a systematic literature review. Clean Technology. 2021 Jan; 3(1): 19-36. doi: 10.3390/cleantechnol3010002.
Boddey RM, Polidoro JC, Resende AS, Alves BJ, Urquiaga S. Use of the15N natural abundance technique for the quantification of the contribution of N2 fixation to sugar cane and other grasses. Functional Plant Biology. 2001 Sep; 28(9): 889-95. doi: 10.1071/PP01058.
Tse TJ, Wiens DJ, Reaney MJ. Production of bioethanol—A review of factors affecting ethanol yield. Fermentation. 2021 Nov; 7(4): 268. doi: 10.3390/fermentation7040268.
Cha KS and Bae JH. Dynamic impacts of high oil prices on the bioethanol and feedstock markets. Energy Policy. 2011 Feb; 39(2): 753-60. doi: 10.1016/j.enpol.2010.10.049.
Fang X, Shen Y, Zhao J, Bao X, Qu Y. Status and prospect of lignocellulosic bioethanol production in China. Bioresource Technology. 2010 Jul; 101(13): 4814-9. doi: 10.1016/j.biortech.2009.11.050.
Sajid Z, da Silva MA, Danial SN. Historical analysis of the role of governance systems in the sustainable development of biofuels in Brazil and the United States of America (USA). Sustainability. 2021 Jun; 13(12): 6881. doi: 10.3390/su13126881.
Proskurina S, Junginger M, Heinimö J, Tekinel B, Vakkilainen E. Global biomass trade for energy—Part 2: Production and trade streams of wood pellets, liquid biofuels, charcoal, industrial roundwood and emerging energy biomass. Biofuels Bioproduction and Biorefining. 2019 Mar; 13(2): 371-87. doi: 10.1002/bbb.1858.
Baldani JI, Reis VM, Baldani VL, Döbereiner J. A brief story of nitrogen fixation in sugarcane—reasons for success in Brazil. Functional Plant Biology. 2002 Apr; 29(4): 417-23. doi: 10.1071/PP01083.
Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund MF, Lidén G, Zacchi G. Bio-ethanol–the fuel of tomorrow from the residues of today. Trends in Biotechnology. 2006 Dec; 24(12): 549-56. doi: 10.1016/j.tibtech.2006.10.004.
Santos Júnior EP, Silva EG, Sousa MH, Dutra ED, Silva AS, Sales AT, et al. Potentialities and Impacts of Biomass Energy in the Brazilian Northeast Region. Energies. 2023 May; 16(9): 3903. doi: 10.3390/en16093903.
Sadh PK, Duhan S, Duhan JS. Agro-industrial wastes and their utilization using solid state fermentation: a review. Bioresources and Bioprocessing. 2018 Dec; 5(1): 1-5. doi: 10.1186/s40643-017-0187-z.
Rosillo-Calle F and Walter A. Global market for bioethanol: historical trends and future prospects. Energy for Sustainable Development. 2006 Mar; 10(1): 20-32. doi: 10.1016/S0973-0826(08)60504-9.
Bennett AS and Anex RP. Production, transportation and milling costs of sweet sorghum as a feedstock for centralized bioethanol production in the upper Midwest. Bioresource Technology. 2009 Feb; 100(4): 1595-607. doi: 10.1016/j.biortech.2008.09.023.
Bušić A, Marđetko N, Kundas S, Morzak G, Belskaya H, Ivančić Šantek M, et al. Bioethanol production from renewable raw materials and its separation and purification: a review. Food Technology and Biotechnology. 2018 Sep; 56(3): 289-311. doi: 10.17113/ftb.56.03.18.5546.
Davila-Gomez FJ, Chuck-Hernandez C, Perez-Carrillo E, Rooney WL, Serna-Saldivar SO. Evaluation of bioethanol production from five different varieties of sweet and forage sorghums (Sorghum bicolor (L) Moench). Industrial Crops and Products. 2011 May; 33(3): 611-6. doi: 10.1016/j.indcrop.2010.12.022.
Wang L, Sharifzadeh M, Templer R, Murphy RJ. Bioethanol production from various waste papers: economic feasibility and sensitivity analysis. Applied Energy. 2013 Nov; 111: 1172-82. doi: 10.1016/j.apenergy.2012.08.048.
Neupane B, Halog A, Dhungel S. Attributional life cycle assessment of woodchips for bioethanol production. Journal of Cleaner Production. 2011 Apr; 19(6-7): 733-41. doi: 10.1016/j.jclepro.2010.12.002.
Wang M, Wu M, Huo H. Life-cycle energy and greenhouse gas emission impacts of different corn ethanol plant types. Environmental Research Letters. 2007 May; 2(2): 024001. doi: 10.1088/1748-9326/2/2/024001.
Ahorsu R, Medina F, Constantí M. Significance and challenges of biomass as a suitable feedstock for bioenergy and biochemical production: a review. Energies. 2018 Dec; 11(12): 3366. doi: 10.3390/en11123366.
Hirani AH, Javed N, Asif M, Basu SK, Kumar A. A review on first-and second-generation biofuel productions. Biofuels: Greenhouse Gas Mitigation and Global Warming: Next Generation Biofuels and Role of Biotechnology. 2018 Feb: 141-54. doi: 10.1007/978-81-322-3763-1_8.
Joshi A, Kanthaliya B, Arora J. Halophytes: The nonconventional crops as source of biofuel production. Handbook of Halophytes: from Molecules to Ecosystems towards Biosaline Agriculture. 2020 Sep: 1-28. doi: 10.1007/978-3-030-17854-3_126-1.
Otero JM, Panagiotou G, Olsson L. Fueling industrial biotechnology growth with bioethanol. Biofuels. 2007 Jan; 108: doi: 1-40. 10.1007/10_2007_071.
Sarangi PK and Nayak MM. Agro‐Waste for Second‐Generation Biofuels. Liquid Biofuels: Fundamentals, Characterization, and Applications. 2021 May; 20: 697-709. doi: 10.1002/9781119793038.ch20.
Shan C, Yang H, Han D, Zhang Q, Ivaska A, Niu L. Electrochemical determination of NADH and ethanol based on ionic liquid-functionalized graphene. Biosensors and Bioelectronics. 2010 Feb; 25(6): 1504-8. doi: 10.1016/j.bios.2009.11.009.
Alalwan HA, Alminshid AH, Aljaafari HA. Promising evolution of biofuel generations. Subject review. Renewable Energy Focus. 2019 Mar; 28: 127-39. doi: 10.1016/j.ref.2018.12.006.
Dammer L, Carus M, Piotrowski S, Puente Á, Breitmayer E, Beus ND, et al. Sustainable first and second-generation bioethanol for Europe: a sustainability assessment in the context of the European Commission's REDII proposal. Industrial Biotechnology. 2017 Dec; 13(6): 292-300. doi: 10.1089/ind.2017.29105.lda.
Papa G, Rodriguez S, George A, Schievano A, Orzi V, Sale KL, Singh S, et al. Comparison of different pretreatments for the production of bioethanol and biomethane from corn stover and switchgrass. Bioresource Technology. 2015 May; 183: 101-10. doi: 10.1016/j.biortech.2015.01.121.
Singh MK, Sahni S, Narang A. Production of Liquid Biofuels from Lignocellulosic Biomass. Energy: Crises, Challenges and Solutions. 2021 Sep; 12: 208-30. doi: 10.1002/9781119741503.ch12.
Gautam P, Upadhyay SN, Dubey SK. Bio-methanol as a renewable fuel from waste biomass: current trends and future perspective. Fuel. 2020 Aug; 273: 117783. doi: 10.1016/j.fuel.2020.117783.
Sikarwar VS, Zhao M, Fennell PS, Shah N, Anthony EJ. Progress in biofuel production from gasification. Progress in Energy and Combustion Science. 2017 Jul; 61: 189-248. doi: 10.1016/j.pecs.2017.04.001.
Tsita KG, Kiartzis SJ, Ntavos NK, Pilavachi PA. Next generation biofuels derived from thermal and chemical conversion of the Greek transport sector. Thermal Science and Engineering Progress. 2020 Jun; 17: 100387. doi: 10.1016/j.tsep.2019.100387.
Yousuf A, Pirozzi D, Sannino F. Fundamentals of lignocellulosic biomass. Lignocellulosic biomass to liquid biofuels. 2020 Jan: 1-15. doi: 10.1016/B978-0-12-815936-1.00001-0.
Mahapatra S, Kumar D, Singh B, Sachan PK. Biofuels and their sources of production: A review on cleaner sustainable alternative against conventional fuel, in the framework of the food and energy nexus. Energy Nexus. 2021 Dec; 4: 100036. doi: 10.1016/j.nexus.2021.100036.
Menten F, Chèze B, Patouillard L, Bouvart F. A review of LCA greenhouse gas emissions results for advanced biofuels: the use of meta-regression analysis. Renewable and Sustainable Energy Reviews. 2013 Oct; 26: 108-34. doi: 10.1016/j.rser.2013.04.021.
Xiaogang H, Jalalah M, Jingyuan W, Zheng Y, Li X, Salama ES. Microalgal growth coupled with wastewater treatment in open and closed systems for advanced biofuel generation. Biomass Conversion and Biorefinery. 2020 Oct; 12: 1939-58. doi: 10.1007/s13399-020-01061-w.
Sarkar N, Ghosh SK, Bannerjee S, Aikat K. Bioethanol production from agricultural wastes: an overview. Renewable energy. 2012 Jan; 37(1): 19-27. doi: 10.1016/j.renene.2011.06.045.
Rezania S, Oryani B, Cho J, Talaiekhozani A, Sabbagh F, Hashemi B, et al. Different pretreatment technologies of lignocellulosic biomass for bioethanol production: An overview. Energy. 2020 May; 199: 117457. doi: 10.1016/j.energy.2020.117457.
Huang C, Jiang X, Shen X, Hu J, Tang W, Wu X, et al. Lignin-enzyme interaction: A roadblock for efficient enzymatic hydrolysis of lignocellulosics. Renewable and Sustainable Energy Reviews. 2022 Feb; 154: 111822. doi: 10.1016/j.rser.2021.111822.
Kim JS, Park SC, Kim JW, Park JC, Park SM, Lee JS. Production of bioethanol from lignocellulose: Status and perspectives in Korea. Bioresource Technology. 2010 Jul; 101(13): 4801-5. doi: 10.1016/j.biortech.2009.12.059.
Baig KS, Wu J, Turcotte G. Future prospects of delignification pretreatments for the lignocellulosic materials to produce second generation bioethanol. International Journal of Energy Research. 2019 Mar; 43(4): 1411-27. doi: 10.1002/er.4292.
Haq F, Ali H, Shuaib M, Badshah M, Hassan SW, Munis MF, Chaudhary HJ. Recent progress in bioethanol production from lignocellulosic materials: A review. International Journal of Green Energy. 2016 Nov; 13(14): 1413-41. doi: 10.1080/15435075.2015.1088855.
Allen TD, Caldwell ME, Lawson PA, Huhnke RL, Tanner RS. Alkalibaculum bacchi gen. nov., sp. nov., a CO-oxidizing, ethanol-producing acetogen isolated from livestock-impacted soil. International Journal of Systematic and Evolutionary Microbiology. 2010 Oct; 60(10): 2483-9. doi: 10.1099/ijs.0.018507-0.
Bhatia SK, Jagtap SS, Bedekar AA, Bhatia RK, Rajendran K, Pugazhendhi A, et al. Renewable biohydrogen production from lignocellulosic biomass using fermentation and integration of systems with other energy generation technologies. Science of the Total Environment. 2021 Apr; 765: 144429. doi: 10.1016/j.scitotenv.2020.144429.
Ibeto CN, Ofoefule AU, Agbo KE. A global overview of biomass potentials for bioethanol production: a renewable alternative fuel. Trends in Applied Sciences Research. 2011 May; 6(5): 410. doi: 10.3923/tasr.2011.410.425.
Neelam M, Rekha S, Veeru P. Bioethanol Production by A Niger produced cellulase by solid state fermentation. International Journal of Science and Researcg. 2014 Aug; 3(8): 807-10.
Clauser NM, González G, Mendieta CM, Kruyeniski J, Area MC, Vallejos ME. Biomass waste as sustainable raw material for energy and fuels. Sustainability. 2021 Jan; 13(2): 794. doi: 10.3390/su13020794.
Salassi ME. Economic Feasibility of Ethanol Production from Sugar Crops. Louisiana Agriculture. 2007. [Last cited: 29th Nov 2023]. Available at: https://www.lsuagcenter.com/portals/communications/publications/agmag/archive/2007/winter/the-economic-feasibility-of-ethanol-production-from-sugar-crops.
Piecyk K, Davis RE, Jankowska-Anyszka M. Synthesis of 13C-and 14C-labeled dinucleotide mRNA cap analogues for structural and biochemical studies. Bioorganic & Medicinal Chemistry Letters. 2012 Jul; 22(13): 4391-5. doi: 10.1016/j.bmcl.2012.04.120.
Crabbe JC, Metten P, Belknap JK, Spence SE, Cameron AJ, Schlumbohm JP, et al. Progress in a replicated selection for elevated blood ethanol concentrations in HDID mice. Genes, Brain and Behavior. 2014 Feb; 13(2): 236-46. doi: 10.1111/gbb.12105.
Dionisi D, Anderson JA, Aulenta F, McCue A, Paton G. The potential of microbial processes for lignocellulosic biomass conversion to ethanol: a review. Journal of Chemical Technology & Biotechnology. 2015 Mar; 90(3): 366-83. doi: 10.1002/jctb.4544.
Kour D, Rana KL, Yadav N, Yadav AN, Singh J, Rastegari AA, et al. Agriculturally and industrially important fungi: current developments and potential biotechnological applications. Recent Advancement in White Biotechnology through Fungi. 2019 Apr: 1-64. doi: 10.1007/978-3-030-14846-1_1.
Pasha C, Nagavalli M, Venkateswar Rao L. Lantana camara for fuel ethanol production using thermotolerant yeast. Letters in Applied Microbiology. 2007 Jun; 44(6): 666-72. doi: 10.1111/j.1472-765X.2007.02116.x.
Chandel AK, Chan ES, Rudravaram R, Narasu ML, Rao LV, Ravindra P. Economics and environmental impact of bioethanol production technologies: an appraisal. Biotechnology and Molecular Biology Reviews. 2007 Feb; 2(1): 14-32.
Keshwani DR and Cheng JJ. Switchgrass for bioethanol and other value-added applications: a review. Bioresource Technology. 2009 Feb; 100(4): 1515-23. doi: 10.1016/j.biortech.2008.09.035.
Rath S, Singh AK, Masih H, Kumar Y, Peter JK, Singh P, et al. Bioethanol production from waste potatoes as an environmental waste management and sustainable energy by using cocultures Aspergillus niger and Saccharomyces cerevisiae. International Journal of Advanced Research. 2014 Apr; 2(4): 553-63.
Lee CK and Halim FA. Oil palm fronds juice: A potential feedstock for bioethanol production. International Journal of Scientific and Research Publications. 2014 Dec; 4(12): 520-6.
Mittermeier F, Bäumler M, Arulrajah P, García Lima JD, Hauke S, Stock A, Weuster‐Botz D. Artificial microbial consortia for bioproduction processes. Engineering in Life Sciences. 2023 Jan; 23(1): e2100152. doi: 10.1002/elsc.202100152.
Xia J, Yang Y, Liu CG, Yang S, Bai FW. Engineering Zymomonas mobilis for robust cellulosic ethanol production. Trends in Biotechnology. 2019 Sep; 37(9): 960-72. doi: 10.1016/j.tibtech.2019.02.002.
Pérez-García LA, Del Rio-Arellano CN, Rincón DF, Norma M. Physiology of Ethanol Production by Zymomonas mobilis. Bioethanol. 2022 Jul: 21-42. doi: 10.1201/9781003277132-2.
Xia T. Metabolic engineering of sugar pathways in Escherichia coli (Doctoral dissertation, University of Georgia). 2016.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 MARKHOR (The Journal of Zoology)
This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open-access journal and all the published articles / items are distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. For comments editor@markhorjournal.com